Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees.

Identifieur interne : 004A74 ( Main/Exploration ); précédent : 004A73; suivant : 004A75

Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees.

Auteurs : C H Foyer [Royaume-Uni] ; N. Souriau ; S. Perret ; M. Lelandais ; K J Kunert ; C. Pruvost ; L. Jouanin

Source :

RBID : pubmed:8552710

Descripteurs français

English descriptors

Abstract

A poplar hybrid, Populus tremula x Populus alba, was transformed with the bacterial genes for either glutathione reductase (GR) (gor) or glutathione synthetase (GS) (gshII). When the gor gene was targeted to the chloroplasts, leaf GR activities were up to 1000 times greater than in all other lines. In contrast, targeting to the cytosol resulted in 2 to 10 times the GR activity. GR mRNA, protein, and activity levels suggest that bacterial GR is more stable in the chloroplast. When the gshII gene was expressed in the cytosol, GS activities were up to 100 times greater than in other lines. Overexpression of GR or GS in the cytosol had no effect on glutathione levels, but chloroplastic-GR expression caused a doubling of leaf glutathione and an increase in reduction state. The high-chloroplastic-GR expressors showed increased resistance to photoinhibition. The herbicide methyl viologen inhibited CO2 assimilation in all lines, but the increased leaf levels of glutathione and ascorbate in the high-chloroplastic-GR expressors persisted despite this treatment. These results suggest that overexpression of GR in the chloroplast increases the antioxidant capacity of the leaves and that this improves the capacity to withstand oxidative stress.

DOI: 10.1104/pp.109.3.1047
PubMed: 8552710
PubMed Central: PMC161408


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees.</title>
<author>
<name sortKey="Foyer, C H" sort="Foyer, C H" uniqKey="Foyer C" first="C H" last="Foyer">C H Foyer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental Biology, Institute of Grassland and Environmental Research, Aberystwyth, Dyfed, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Environmental Biology, Institute of Grassland and Environmental Research, Aberystwyth, Dyfed</wicri:regionArea>
<wicri:noRegion>Dyfed</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Souriau, N" sort="Souriau, N" uniqKey="Souriau N" first="N" last="Souriau">N. Souriau</name>
</author>
<author>
<name sortKey="Perret, S" sort="Perret, S" uniqKey="Perret S" first="S" last="Perret">S. Perret</name>
</author>
<author>
<name sortKey="Lelandais, M" sort="Lelandais, M" uniqKey="Lelandais M" first="M" last="Lelandais">M. Lelandais</name>
</author>
<author>
<name sortKey="Kunert, K J" sort="Kunert, K J" uniqKey="Kunert K" first="K J" last="Kunert">K J Kunert</name>
</author>
<author>
<name sortKey="Pruvost, C" sort="Pruvost, C" uniqKey="Pruvost C" first="C" last="Pruvost">C. Pruvost</name>
</author>
<author>
<name sortKey="Jouanin, L" sort="Jouanin, L" uniqKey="Jouanin L" first="L" last="Jouanin">L. Jouanin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1995">1995</date>
<idno type="RBID">pubmed:8552710</idno>
<idno type="pmid">8552710</idno>
<idno type="pmc">PMC161408</idno>
<idno type="doi">10.1104/pp.109.3.1047</idno>
<idno type="wicri:Area/Main/Corpus">004A68</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004A68</idno>
<idno type="wicri:Area/Main/Curation">004A68</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004A68</idno>
<idno type="wicri:Area/Main/Exploration">004A68</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees.</title>
<author>
<name sortKey="Foyer, C H" sort="Foyer, C H" uniqKey="Foyer C" first="C H" last="Foyer">C H Foyer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental Biology, Institute of Grassland and Environmental Research, Aberystwyth, Dyfed, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Environmental Biology, Institute of Grassland and Environmental Research, Aberystwyth, Dyfed</wicri:regionArea>
<wicri:noRegion>Dyfed</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Souriau, N" sort="Souriau, N" uniqKey="Souriau N" first="N" last="Souriau">N. Souriau</name>
</author>
<author>
<name sortKey="Perret, S" sort="Perret, S" uniqKey="Perret S" first="S" last="Perret">S. Perret</name>
</author>
<author>
<name sortKey="Lelandais, M" sort="Lelandais, M" uniqKey="Lelandais M" first="M" last="Lelandais">M. Lelandais</name>
</author>
<author>
<name sortKey="Kunert, K J" sort="Kunert, K J" uniqKey="Kunert K" first="K J" last="Kunert">K J Kunert</name>
</author>
<author>
<name sortKey="Pruvost, C" sort="Pruvost, C" uniqKey="Pruvost C" first="C" last="Pruvost">C. Pruvost</name>
</author>
<author>
<name sortKey="Jouanin, L" sort="Jouanin, L" uniqKey="Jouanin L" first="L" last="Jouanin">L. Jouanin</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="1995" type="published">1995</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antioxidants (metabolism)</term>
<term>Ascorbic Acid (analysis)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Chlorophyll (analysis)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>Dose-Response Relationship, Radiation (MeSH)</term>
<term>Glutathione (analysis)</term>
<term>Glutathione Reductase (genetics)</term>
<term>Glutathione Reductase (metabolism)</term>
<term>Glutathione Synthase (genetics)</term>
<term>Glutathione Synthase (metabolism)</term>
<term>Light (MeSH)</term>
<term>Photoperiod (MeSH)</term>
<term>Photosynthesis (radiation effects)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Trees (enzymology)</term>
<term>Trees (radiation effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide ascorbique (analyse)</term>
<term>Antioxydants (métabolisme)</term>
<term>Arbres (effets des radiations)</term>
<term>Arbres (enzymologie)</term>
<term>Chlorophylle (analyse)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Dioxyde de carbone (métabolisme)</term>
<term>Glutathion (analyse)</term>
<term>Glutathione reductase (génétique)</term>
<term>Glutathione reductase (métabolisme)</term>
<term>Glutathione synthase (génétique)</term>
<term>Glutathione synthase (métabolisme)</term>
<term>Lumière (MeSH)</term>
<term>Photopériode (MeSH)</term>
<term>Photosynthèse (effets des radiations)</term>
<term>Relation dose-effet des rayonnements (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Ascorbic Acid</term>
<term>Chlorophyll</term>
<term>Glutathione</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutathione Reductase</term>
<term>Glutathione Synthase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antioxidants</term>
<term>Carbon Dioxide</term>
<term>Glutathione Reductase</term>
<term>Glutathione Synthase</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Acide ascorbique</term>
<term>Chlorophylle</term>
<term>Glutathion</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des radiations" xml:lang="fr">
<term>Arbres</term>
<term>Photosynthèse</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Arbres</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutathione reductase</term>
<term>Glutathione synthase</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antioxydants</term>
<term>Dioxyde de carbone</term>
<term>Glutathione reductase</term>
<term>Glutathione synthase</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Photosynthesis</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cloning, Molecular</term>
<term>Dose-Response Relationship, Radiation</term>
<term>Light</term>
<term>Photoperiod</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Clonage moléculaire</term>
<term>Lumière</term>
<term>Photopériode</term>
<term>Relation dose-effet des rayonnements</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A poplar hybrid, Populus tremula x Populus alba, was transformed with the bacterial genes for either glutathione reductase (GR) (gor) or glutathione synthetase (GS) (gshII). When the gor gene was targeted to the chloroplasts, leaf GR activities were up to 1000 times greater than in all other lines. In contrast, targeting to the cytosol resulted in 2 to 10 times the GR activity. GR mRNA, protein, and activity levels suggest that bacterial GR is more stable in the chloroplast. When the gshII gene was expressed in the cytosol, GS activities were up to 100 times greater than in other lines. Overexpression of GR or GS in the cytosol had no effect on glutathione levels, but chloroplastic-GR expression caused a doubling of leaf glutathione and an increase in reduction state. The high-chloroplastic-GR expressors showed increased resistance to photoinhibition. The herbicide methyl viologen inhibited CO2 assimilation in all lines, but the increased leaf levels of glutathione and ascorbate in the high-chloroplastic-GR expressors persisted despite this treatment. These results suggest that overexpression of GR in the chloroplast increases the antioxidant capacity of the leaves and that this improves the capacity to withstand oxidative stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">8552710</PMID>
<DateCompleted>
<Year>1996</Year>
<Month>02</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>109</Volume>
<Issue>3</Issue>
<PubDate>
<Year>1995</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees.</ArticleTitle>
<Pagination>
<MedlinePgn>1047-57</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>A poplar hybrid, Populus tremula x Populus alba, was transformed with the bacterial genes for either glutathione reductase (GR) (gor) or glutathione synthetase (GS) (gshII). When the gor gene was targeted to the chloroplasts, leaf GR activities were up to 1000 times greater than in all other lines. In contrast, targeting to the cytosol resulted in 2 to 10 times the GR activity. GR mRNA, protein, and activity levels suggest that bacterial GR is more stable in the chloroplast. When the gshII gene was expressed in the cytosol, GS activities were up to 100 times greater than in other lines. Overexpression of GR or GS in the cytosol had no effect on glutathione levels, but chloroplastic-GR expression caused a doubling of leaf glutathione and an increase in reduction state. The high-chloroplastic-GR expressors showed increased resistance to photoinhibition. The herbicide methyl viologen inhibited CO2 assimilation in all lines, but the increased leaf levels of glutathione and ascorbate in the high-chloroplastic-GR expressors persisted despite this treatment. These results suggest that overexpression of GR in the chloroplast increases the antioxidant capacity of the leaves and that this improves the capacity to withstand oxidative stress.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Foyer</LastName>
<ForeName>C H</ForeName>
<Initials>CH</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental Biology, Institute of Grassland and Environmental Research, Aberystwyth, Dyfed, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Souriau</LastName>
<ForeName>N</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Perret</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lelandais</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kunert</LastName>
<ForeName>K J</ForeName>
<Initials>KJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pruvost</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jouanin</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000975">Antioxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.7</RegistryNumber>
<NameOfSubstance UI="D005980">Glutathione Reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.3.2.3</RegistryNumber>
<NameOfSubstance UI="D005981">Glutathione Synthase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>PQ6CK8PD0R</RegistryNumber>
<NameOfSubstance UI="D001205">Ascorbic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000975" MajorTopicYN="N">Antioxidants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001205" MajorTopicYN="N">Ascorbic Acid</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004307" MajorTopicYN="N">Dose-Response Relationship, Radiation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005980" MajorTopicYN="N">Glutathione Reductase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005981" MajorTopicYN="N">Glutathione Synthase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017440" MajorTopicYN="N">Photoperiod</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000528" MajorTopicYN="Y">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="Y">radiation effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1995</Year>
<Month>11</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1995</Year>
<Month>11</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1995</Year>
<Month>11</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">8552710</ArticleId>
<ArticleId IdType="pii">109/3/1047</ArticleId>
<ArticleId IdType="pmc">PMC161408</ArticleId>
<ArticleId IdType="doi">10.1104/pp.109.3.1047</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 1991 Jul;10(7):1723-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2050109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1970 Aug 15;227(5259):680-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5432063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Sep;97(1):452-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1629-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8434026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1992 Jan;2(1):129-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1303792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1987 Feb;83(2):278-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1990 Apr;14(4):501-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1966384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 1994 Nov;22(4):936-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7698488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1980 Jul 15;106(1):207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7416462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1986 Nov;82(3):700-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">388439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Nov;97(3):863-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1985 Dec;79(4):1044-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Jun;99(2):428-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Oct;103(2):621-627</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1984 Nov 26;12(22):8711-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6095209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1990 Jul;15(1):127-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2103427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1994 Mar;5(3):397-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8180623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1987 Dec 20;6(13):3901-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3327686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 1994 Nov;22(4):931-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7698487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Jouanin, L" sort="Jouanin, L" uniqKey="Jouanin L" first="L" last="Jouanin">L. Jouanin</name>
<name sortKey="Kunert, K J" sort="Kunert, K J" uniqKey="Kunert K" first="K J" last="Kunert">K J Kunert</name>
<name sortKey="Lelandais, M" sort="Lelandais, M" uniqKey="Lelandais M" first="M" last="Lelandais">M. Lelandais</name>
<name sortKey="Perret, S" sort="Perret, S" uniqKey="Perret S" first="S" last="Perret">S. Perret</name>
<name sortKey="Pruvost, C" sort="Pruvost, C" uniqKey="Pruvost C" first="C" last="Pruvost">C. Pruvost</name>
<name sortKey="Souriau, N" sort="Souriau, N" uniqKey="Souriau N" first="N" last="Souriau">N. Souriau</name>
</noCountry>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Foyer, C H" sort="Foyer, C H" uniqKey="Foyer C" first="C H" last="Foyer">C H Foyer</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004A74 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004A74 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:8552710
   |texte=   Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:8552710" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020